AIR COOLING OF A HPC SERVER CHASSIS WITH VERY HIGH POWER DENSITY

Altair Technical Conference West, 2017 Michael Wahl, Ph.D. Next Step Engineering Solutions, LLC

OVERVIEW

- INTRODUCTION
- APPLICATION
- BACKGROUND CONVECTIVE COOLING
- ANALYSIS STRATEGY
- ANALYSIS RESULTS
- SUMMARY

INTRODUCTION

- In business since 2012
- Mission: Support of technology start-ups
 - ✓ Technology validation, development strategy, IP development, technical marketing
 - ✓ Engineering services
- Expertise
 - Mechanical engineering, fluid dynamics, thermodynamics, applied mathematics, simulations (Systems, CFD, FEA)
 - \checkmark Test and data acquisition
 - ✓ Software development and scientific computing
- Areas of Specialization
 - ✓ Internal Combustion Engines, Thin Film Lubrication, Image Processing and 3-D Vision, Electronics Cooling

NextStepToTake.com

APPLICATION

KNL SOGE HIGHLY SCALABLE NEURAL COMPUTING

SCALE ENABLES ARTIFICIAL INTELLIGENCE

All Knuedge related technology is property of Friday Harbor, LLC For inquiries, please contact Tom Hutton (tom.hutton@axaxl.com)

APPLICATION MINDSCALE REQUIREMENTS

Property	Specification		
Scatter/gather	> 1 Peta Transfers/Sec		
N/S Edge processing	100 racks, WindyPoint API processing		
Power/LFE "rack"	125KW		
Compactness	Comm paths < 50M		
Cost/ToC	\$500M / \$100M/Year		
Streams/Rate	~100 billion, average data rate ~1 KB/s		
Storage	NVM, MicroBlade Form Factor		
MicroBlade Modules	500K chips, heavy lifting via reconfigurable logic, 64 GB, 10 Tera-Ops, 1.2 TB/s I/O, ~20 pJ/op		
Latency	< 250 nS PtP, fetch ~400nS		
Communications	Short: LVDS, Medium: mm optical, Long: DWDM Energy: ~20 pJ/bit		
Fault tolerance	1 processor per hour		
Scraping	Assumption: 90% of scraping performed at edge		

5.5D stacked architecture

All Knuedge related technology is property of Friday Harbor, LLC For inquiries, please contact Tom Hutton (tom.hutton@axaxl.com)

BACKGROUND – CONVECTIVE COOLING

- Convective air cooling of electronics is historically very common (both natural and forced convection)
- Heat transfer coefficients (from solid to fluid) depend on boundary layer of heat sink surfaces (far field velocity, turbulence, surface roughness, etc.)
- Given the power dissipation of each electrical component, the analysis goal is to ensure sufficient air flow and to validate max component temperatures
- Altair[©] AcuSolve[©] is ideally suited to solve this type of conjugate heat transfer (CHT) problem

Natural Convection

Forced Convection

CONVECTIVE COOLING MECHANISM

Turbulent

 $< \frac{\partial \overline{u}}{\partial v}$

v = 0, turb

Laminar

Reference: [1] W. Montgomery, <u>http://slideplayer.com/slide/9328881/</u> [2] http://www.bakker.org/dartmouth06/engs150/03-cnsrv.pdf

ROLE OF TURBULENCE

Air flow across flat plate

Note: When flow interacts with heatsink, oftentimes turbulence intensity already > 0 (e.g. fans)

PRACTICAL CONSIDERATIONS

- Classical trade-offs:
 - Heat transfer not linear with flow velocity
 - Flow velocity vs. backpressure
 - Surface area vs. friction/drag
- Advantages of air cooling:
 - Simplicity and reliability (no liquids/no leaks/no plumbing)
 - More space efficient for cooling multiple components on PCB
- Specific challenges:
 - Need to carefully engineer flow through entire enclosure
 - Need to carefully engineer heatsinks
 - Max heat transfer coefficients more limited (compared to liquid cooling)

Example of non-linear heat transfer:

LAYOUT OF HPC SERVER CHASSIS

Chassis divided into two separate compartments (large compartment contains 4 Network Processor Boards and 8 Knureon[™] Boards, small compartment contains 5 Power Supplies) -> each compartment can be analyzed separately.

ANALYSIS STRATEGY

Step-by-step escalation of analysis complexity:

- Perforated end plate -> P&Q curve
- 2 Knureon[™] Board
- 3 Compartment with all processor boards
- 4 Compartment with power supplies

BACKPRESSURE FROM PERFORATED END PLATES

pressure [Pa] -0.005 15.847

21.065

Wall thickness: 1.98 mm Area ratio for slots: 42.4% 'Holes' chosen for subsequent analysis

KNUREON™ BOARD

View Thru Transparent PCB

- Modeled only high-powered components (\geq 1 W) contacting heat sink
- Total power dissipation per board: 477 W

Typical Component Temperatures

8x Perforated End Plate (Modeled as porous layer)

Heatsink with Shroud

(Shroud not visible)

Input temperature: 298.15 K (25°C) Total heat dissipation: 4442 W

4x 80 mm Fan

DISCRETIZATION OF SOLID SURFACES

Simulation is computationally intensive (8 M nodes, 15.4 hours runtime on 8 cores)

Please note that the temperature legend is identical in all cases

HEATSINK DESIGN ITERATION

2nd design better has better cooling and more favorable flow pattern for downstream boards

Busbar dissipates 2x 15 W at full power

FLOW SIMULATION MODEL

FLOW INTO POWER SUPPLIES

BACKPRESSURE CURVE

(Perforated Inlet)

FLOW DISTRIBUTION

x-velocity				
	12.046			
	-8 242			

	PS Flowrate (fan outlet)			
	[m^3/s]	[CFM]	% variation	
Fan 1	0.00495147	10.99	1.23	
Fan 2	0.004861	10.79	-0.62	
Fan 3	0.00487939	10.83	-0.25	
Fan 4	0.00488969	10.85	-0.04	
Fan 5	0.00487602	10.82	-0.32	
Average	0.00489151	10.85		

Flow balance within +/- 1.25 %

SUMMARY

- The CHT analysis performed for this study indicates that nearly 5 kW of waste heat can be removed from the chassis via air cooling using off-the-shelf computer fans while keeping all electrical components well below their temperature limits
- Particular emphasis was placed on the heatsink designs to ensure low back pressure and uniform flow patterns
- The AcuSolve[©] CFD solver appeared to be very efficient. All analyses could be performed on a system running a single 8-core AMD Ryzen[™] 7 1800X

Contact: Michael@NextStepToTake.com

• Special thanks to KnuEdge Inc., San Diego, for giving permission for this presentation.